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Abstract
The site-diluted Ising ferromagnet is investigated on a square lattice, within
short-time-dynamics numerical simulations, for different site concentrations. The dynamical
exponents θ and z are obtained and it is shown that these exponents do depend strongly on the
disorder, exhibiting a clear breakdown of universality, characterized by relative variations of
nearly 100% in the range of site concentrations investigated. In what concerns the static
exponents β and ν, universality is preserved within the error bars.

1. Introduction

Although a large effort has been dedicated to the investigation
of disordered magnetic systems, a lot of controversial aspects
remain with no definitive answer. From the theoretical point
of view, there exist only a few exact results, in such a way that
approximation methods have to be employed. On the other
hand, in the experimental context, most of the measurements
undergo difficulties due to long relaxation times, which also
appears to be a major obstacle in numerical simulations.
Among these, disordered ferromagnets [1, 2] have faced the
attention of many researchers, and a proper understanding
of their behavior represents a great challenge in the physics
of disordered systems. One is mostly concerned with the
possible modifications, in the pure-system critical properties,
due to the presence of randomness. According to the Harris
criterion [3], the disorder will (will not) modify the critical
behavior, i.e. the universality class, if in the corresponding
pure system the specific-heat critical exponent α is positive
(negative). Obviously, such a criterion is useless for the Ising
ferromagnet in two dimensions, since α = 0 for the pure case.
As a consequence of this, disordered Ising ferromagnets in
two dimensions have been the object of a lot of controversy,
with different scenarios emerging. Several works support the
strong-universality picture [2, 4–6], claiming that the presence

4 Author to whom any correspondence should be addressed.

of disorder affects the critical properties of the model only
through logarithmic corrections to the pure-system behavior. It
should be emphasized that such a picture is strictly valid only
in the limit of weak disorder [4], since the disorder is treated as
a perturbation. On the other hand, some numerical works [7–9]
suggest thermodynamic quantities presenting the usual power-
law behavior with the critical exponents varying continuously
with the disorder, in such a way as to keep certain ratios (like
γ /ν and β/ν) fixed at the pure-system values; this is the
so-called weak-universality scenario [10]. One of the most
investigated and controversial models is the two-dimensional
site-diluted Ising ferromagnet; in this case, a systematic finite-
size scaling analysis [11] claims that a clear discrimination
between the strong- and weak-universality scenarios requires
numerical simulations with much larger lattice sizes than the
ones performed so far.

Numerical simulations in the short-time regime became an
important tool in the investigation of critical phenomena [12].
The interesting point, in this so-called short-time-dynamics
method, is that important scaling behavior seems to be already
present in the early stages of the dynamical evolution of
some statistical mechanics models at criticality [13]. One
of the advantages of this procedure is that, in its early stage
of evolution, the system presents small spatial and temporal
correlation lengths. Therefore, apart from the smaller times
that one is concerned with in these simulations, one gets
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a substantial reduction of finite-size effects, resulting in a
considerable decrease of computational effort.

In the present work we investigate the ferromagnetic Ising
model on a square lattice with dilution of sites (probability p
for active sites and (1 − p) for diluted ones), in the short-
time regime. Several values of site concentrations p are
considered in the range 0.70 � p � 1.00. The scaling of
quantities, like the magnetization and some of its moments,
as well as simple correlation functions, are considered within
the short-time-dynamics procedure. For the dynamical critical
exponents, a clear breakdown of universality is found, with
exponents varying typically by a factor of two in the range
of site concentrations considered. Due to the magnitude of
variations in such exponents, as well as to the quality of the fits,
it seems very unlikely that corrections to scaling may change
this picture qualitatively. Contrary to that, the static critical
exponents β and ν follow universality within the error bars.
In the next section we define the numerical procedure and the
model; in section 3 we present and discuss our results.

2. The numerical procedure and the model

Based on the simple scaling hypothesis for the moments of the
magnetization, several interesting power-law behaviors have
been predicted, and verified numerically, in a wide variety of
pure magnetic systems, at criticality, for a short time t greater
than a certain microscopic timescale tmic [12]. In the case of
Ising variables, Si (t) = ±1, one may represent the kth moment
of the magnetization at time t as

M (k)(t) = 1

Nk

〈( N∑
i=1

Si (t)

)k〉
, (1)

where N stands for the total number of spins of the lattice
and 〈· · ·〉 represents an average over different samples at
time t . For pure systems, this corresponds to an average
over distinct sequences of random numbers up to time t ,
whereas in the case of disordered systems it includes, as
well, an additional average over different disorder realizations.
Since we are dealing with an out-of-equilibrium regime, the
scaling behaviors should depend on the initial conditions,
which, for ferromagnetic systems, are essentially taken into
account through the definition of the initial magnetization of
the system. If the system is quenched from an initial state with
a small magnetization, m0 � 1, one gets for the magnetization
at time t (herein we shall use the standard notation, M (1)(t) ≡
M(t)), its second moment, and the two-time autocorrelation
function, respectively:

M(t) ∼ m0tθ , (2)

M (2)(t) ∼ t (d−2β/ν)/z , (3)

C(t) = 1

N

〈 N∑
i=1

Si (t)Si (0)

〉
∼ t−(d/z)+θ , (4)

where d corresponds to the lattice dimension. In the scaling
laws above, the standard equilibrium exponents β and ν,
as well as the dynamic exponent z, appear, leading to the

possibility of evaluating them already for very short times of
the evolution of the system. However, a new and independent
dynamical exponent appears, θ , which is related to the
increase of the magnetization at the critical temperature, when
the system is quenched from a high-temperature state. In
order to compute θ from equation (2) one should consider
distinct, small (although finite) values of m0, and then take
an extrapolation to m0 → 0. An equivalent way to carry
on such a procedure consists in starting with a random initial
configuration (i.e. magnetization and correlation length both
equal to zero) and computing the correlation function [14]:

Q(t) = 1

N

〈 N∑
i, j=1

Si (t)Sj (0)

〉
∼ tθ . (5)

Now, if one starts the system with a completely ordered
configuration (m0 = 1), the magnetization should follow the
simple power-law behavior:

M(t) ∼ t−β/(νz). (6)

Within this initial condition one may compute also the absolute
value of the derivative with respect to the temperature, at the
critical temperature Tc [15, 16]:

D(t) =
∣∣∣∣∂ ln M(t, τ )

∂τ

∣∣∣∣
τ=0

, (7)

where τ = (T − Tc)/Tc. This derivative may be computed
numerically through

D(t) = lim
δ→0

1

δ
| ln M(t, 0) − ln M(t,−δ)|, (8)

and is expected to present the following behavior:

D(t) ∼ t1/(νz). (9)

In addition to that, the ratio of moments:

U2(t, L) = M (2)(t, L)

[M(t, L)]2
− 1, (10)

should behave like U2(t, L → ∞) ∼ td/z , from which one
could compute the exponent z independently. However, the
quantity U2(t, L) has not been very successful when applied to
simple systems, like, for example, the two-dimensional q = 3
Potts model [12]. The reason for such a failure is probably
related to the scaling behavior of the second moment M (2)

with the initial condition m0 = 1. Therefore, a new quantity
has been proposed, which seems to work better than the one
defined in equation (10); now, one considers mixed initial
conditions to get [17, 18]

F2(t) = M (2)(t, L)|m0=0

[M(t, L)]2|m0=1
∼ td/z . (11)

In principle, one can make use of these scaling laws in order to
find all the exponents defined above; notice that there are more
scaling laws than exponents, in such a way that computing a
given exponent through different sets of scaling forms should
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lead to the same results, within the error bars associated with
the numerical procedure. This framework has worked fairly
well in the study of pure systems, with a few exceptions [12].

The validity of the scaling hypothesis for disordered
systems is very controversial, even for equilibrium prop-
erties, leading to well-known proposals of corrections to
scaling [2, 4–6]. The introduction of disorder tends to smooth
out the usual sharp scaling behavior in the thermodynamic
quantities near criticality, in such a way that the proposal of
scaling laws becomes troublesome. On the other hand, the
numerical results from computer simulations are characterized
by an increase in the fluctuations (i.e. larger error bars) in
the quantities considered, reducing the reliability in the cor-
responding critical-exponent estimates. Similar problems are
expected to appear within the short-time-dynamics framework,
as verified in a few applications [19–21]; some examples of
such difficulties are listed below.

(i) Severe (in fact, power-law) corrections to scaling were
proposed for the second moment of the magnetization
and two-spin autocorrelation function (cf equations (3)
and (4)) in the analysis of the two-dimensional random
bond Ising model [20].

(ii) Different estimates for the same exponents, through the
analysis of the scaling properties of distinct quantities,
were found in the study of the two-dimensional bond-
diluted Ising model [21]. In this case, the authors made
use of the scaling relations in equations (2)–(4), (6)
and (10), as well as the moments ratio, U4(t, L) =
1 − [M (4)(t, L)/(3M2(t, L))], this later quantity being
evaluated with m0 = 0. This suggests that some of the
scaling laws employed in [21] may not be appropriate
for the investigation of this problem. It is possible
that the same troublesome scaling laws of case (i), i.e.
equations (3) and (4), as well as the moments ratio
of equation (10) (which has already failed for simpler
problems [12]) may be the cause of such conflicting
results. Apart from this, an accurate estimate of the
exponent z through the analysis of the moments’ ratio
U4(t, L) seems to be hard for disordered systems, since
one should consider a scaling collapse from two-time
series, which usually present more fluctuations than those
of a pure system.

Due to the difficulties mentioned above, we shall consider
only a restricted set of quantities, from those defined above,
in order to evaluate critical exponents for a similar disordered
magnetic system, as described below.

Herein, we shall investigate the nearest-neighbor interac-
tion site-diluted ferromagnetic Ising model, defined through
the Hamiltonian

H = −J
∑
〈i j〉

εiε j Si S j , (12)

with J > 0, and Si = ±1. The model is considered on a square
lattice of linear size L, with a quenched site disorder following
the probability distribution

P(εi ) = pδ(εi − 1) + (1 − p)δ(εi). (13)

In the limit L → ∞, it exhibits a well-known paramagnetic–
ferromagnetic phase transition at a critical temperature Tc(p),
which decreases for decreasing values of p in the range pc �
p � 1 (pc ≈ 0.59).

It is well known that, in the thermodynamic limit, there
is a single percolating cluster composed of an infinite number
of active sites for p > pc; all remaining clusters are
finite and do not contribute to the averages. For p < pc,
there is no infinite cluster, in such a way that there is no
finite contribution for thermodynamic quantities, like, for
example, the magnetization. However, for finite systems, large
fluctuations may appear due to the fact that one may find
samples with no percolating cluster for p > pc, as well as
samples characterized by a cluster that spans through the whole
lattice, for p < pc. Therefore, it is important to identify, in
each sample, the presence of a percolating cluster [22] in order
to perform the corresponding spin updating procedure.

The spins on each active site i of the percolating cluster
were updated according to a Glauber dynamics, in which one
associates a probability pi(t), at time t :

pi(t) = 1

1 + exp[−2β J
∑

j S j (t)] , (14)

where the summation
∑

j S j (t) applies to nearest-neighbor
spins on active sites. As usual, a uniform random number,
0 � zi (t) � 1, is generated in order to be compared with
the corresponding flipping probability pi(t). In the Glauber
dynamics, the value of the new variable Si (t + 1) depends also
on Si (t) and is defined as

Si (t + 1) =
{

1 if zi (t) � pi(t)

−1 if zi (t) > pi(t)
when Si (t) = −1,

(15a)

Si (t+1) =
{

−1 if zi(t) � 1 − pi(t)

1 if zi(t) > 1 − pi(t)
when Si (t) = 1.

(15b)
In section 3 we present and discuss our results.

3. Results and discussion

The model was studied within the short-time-dynamics
procedure, as described above, with seven different site
concentrations, p = 0.70, 0.75, 0.80, . . . , 1.00, for which
the critical temperatures Tc(p) were already computed, to a
high degree of accuracy, in the literature (see, e.g., [23–27]).
In the analysis that follows we have used the recent critical-
temperature estimates of [27], which were obtained through an
extrapolation to the thermodynamic limit taking into account
a logarithmic correction on the finite-size dependent pseudo-
critical temperature.

We have applied the algorithm of Hoshen–Kopelman
[22, 28] for an appropriate identification of the percolating
cluster in each sample. In our computations we have
considered N as the number of sites of the percolating
cluster, which varied from sample to sample. In addition to
that, averages were carried only over samples presenting a
percolating cluster. Our unit of time in the present problem
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Table 1. Estimates of the critical exponents θ , z, β, and ν, for the two-dimensional site-diluted ferromagnetic Ising model, from
short-time-dynamics numerical simulations, at criticality. The critical-temperature estimates, Tc(p)/Tc(1), shown above, were taken
from [27], where Tc(1) refers to the well-known exact critical temperature of the two-dimensional Ising model on a square lattice,
kBTc(1)/J = 2.269 185 . . .. The exponents θ were calculated by using both equations (2) and (5) and were found to agree, within the error
bars; the results above correspond to an average value of these two estimates, taking into account their respective error bars. The combination
of exponents β/(νz) and the dynamical exponent z were computed from equations (6) and (11), respectively, which lead to the estimates for
the ratios β/ν.

p Tc(p)/Tc(1) θ β/(νz) z β/ν β ν

0.70 0.4728 0.103(6) 0.0329(4) 3.78(6) 0.124(2) 0.129(7) 1.04(4)
0.75 0.5724 0.127(5) 0.0365(4) 3.37(5) 0.123(3) 0.129(9) 1.05(5)
0.80 0.6655 0.137(5) 0.0413(3) 2.95(4) 0.122(3) 0.123(8) 1.01(4)
0.85 0.7538 0.158(3) 0.0456(3) 2.72(4) 0.124(3) 0.126(7) 1.02(3)

0.90 0.8392 0.167(4) 0.0486(3) 2.51(4) 0.122(3) 0.122(5) 1.00(2)
0.95 0.9210 0.180(3) 0.0526(2) 2.33(3) 0.123(2) 0.122(4) 0.99(2)
1.00 1.0000 0.194(2) 0.0590(2) 2.14(3) 0.126(2) 0.123(4) 0.98(2)

corresponds to a complete sweep of the percolating cluster,
denoted from now on by 1 Monte Carlo (MC) step.

Due to the difficulties found in previous studies of
disordered magnetic systems [20, 21] (see items (i) and (ii)
discussed in section 2), we have restricted our analysis only
to the set of scaling laws in equations (2), (5), (6), (9) and (11),
which, in our view, correspond to the most reliable ones for
the study of the site-diluted Ising model. We have found
good linear fits from these equations, when considered in the
critical temperatures Tc(p) of [27], although small variations
in such critical-temperature estimates (typically, in the fourth
decimal digits) yielded equally good fits. Our critical-exponent
estimates were obtained by choosing linear fits over time
intervals leading to the highest fit quality. Such time intervals
depended on the quantity to be analyzed, and they were
adjusted in each case such as to yield linear-fit qualities with
a correlation parameter Q not less than 0.98, i.e. 0.98 � Q �
1.00. Our simulations were carried for lattice sizes L = 128
and 256, with averages over the fraction of samples presenting
a percolating cluster being performed among a number of
different samples (disorder configurations) of the order of 105.
Although our linear fits were considered over time intervals
leading to the highest fit qualities, the error bars were computed
in such a way as to cover estimates from different time ranges;
for the dynamic critical exponents, these error bars also cover
the results for the two lattice sizes considered. Therefore, in
what concerns the dynamic critical exponents θ and z, our
estimates for the two lattice sizes coincided, within the error
bars, whereas for the static exponents β and ν the results for
the larger size appeared to be more reliable.

In figure 1 we exhibit the short-time magnetization
growth, for an initial magnetization m0 = 0.01, obtained from
simulations on a square lattice of linear size L = 128 with
different site concentrations p. In each case, the system is
quenched from a high-temperature state, at its corresponding
critical temperature Tc(p) (according to the values estimated
in [27], as shown in table 1). The behavior presented suggests
the validity of the scaling law in equation (2), with positive
values of θ , for typical time intervals 10 � t � 100 (in
MC steps). However, one observes that M(t) grows faster
for higher values of p. Moreover, the data for p = 0.90 →
1.00 (weaker disorder) are almost superposed, whereas for
p = 0.70 → 0.85 (stronger disorder), the data are clearly

Figure 1. The magnetization M(t) versus time t (in MC steps), for
different site concentrations p at criticality, with an initial
magnetization m0 = 0.01.

distinguishable. A slower growth in the magnetization, for
increasing disorder, reflects the presence of clusters of diluted
sites, which contribute to decrease the connectivity of the
system.

The plot of M(t) versus time, in logarithmic scale, is
exhibited in figure 2 for the case p = 0.70 at criticality,
with four different small values of the initial magnetization
per site m0. One observes a good agreement with the scaling
law of equation (2), with precise straight lines in the time
interval from t = 10 → t = 150 MC steps. For each
choice of m0, the corresponding values of θ were estimated,
by adjusting, with small variations in this time window, the
time interval leading to the best linear fits; we have found a
slow increase in the values of θ for decreasing values of m0,
as specified in figure 2. A linear extrapolation of these values
leads, in the limit m0 → 0, to the estimate θ = 0.106(3). An
equivalent estimate for the exponent θ may be carried through
the correlation function of equation (5) by starting the system
at criticality with an initial random spin configuration. In this
case, one gets θ = 0.100(3), which agrees within the error
bars with the estimate of the extrapolation m0 → 0. Therefore,
the result in table 1 corresponds to an average between these
two estimates, including their respective error bars. Similar

4



J. Phys.: Condens. Matter 21 (2009) 346005 L F da Silva et al

Figure 2. Logarithmic-scale (base 10) plots of the magnetization
versus time t (in MC steps), in the case p = 0.70 at criticality, for
different small values of m0, according to equation (2).

procedures have been carried for the other values of p shown
in table 1, and in all cases considered we have found an
agreement, within the error bars, between the estimates of these
two methods. We have observed a breakdown of universality in
the results of the exponent θ , for varying values of p, in such a
way that for p = 0.70 one obtains an estimate which is nearly
half of the value for p = 1.00; it should be emphasized that
our estimate for the exponent θ at p = 1.00 [θ = 0.194(2)] is
in agreement with well-known pure-system estimates, i.e. θ =
0.191(3) [12, 29]. Due to the magnitude of this breakdown
of the universality effect, as well as to the quality of the fits,
taking into consideration the good agreement between the two
independent methods employed herein, it is very unlikely that
corrections to scaling may change this picture qualitatively.

In figure 3 we exhibit the magnetization decay with time,
in logarithmic scale, for several site concentrations at their
corresponding critical temperatures (see table 1), produced by
a quenching from a low-temperature configuration (m0 = 1)
with simulations on a square lattice of linear size L = 256.
Once again, the quality of the straight-line fits show the validity
of the scaling law of equation (6), for the present problem, in
the time interval from t = 10 → t = 1000 MC steps. The
estimates of β/(νz) were obtained from the slopes of the best
linear fits, considering small variations in this time window.
The results, presented in table 1, show a clear breakdown of
universality in the quantity β/(νz), which almost doubles its
value as one goes from p = 0.70 up to p = 1.00. An important
question concerns which exponents, within the combination
β/(νz), are responsible for this breakdown of universality.

The increase of the quantity D(t) with time (cf equa-
tions (7)–(9)) is exhibited in logarithmic scale in figure 4,
for simulations on a square lattice of linear size L = 256
with the site concentrations investigated. The results presented
in figure 4 were computed from equation (8), at the critical
temperatures presented in table 1, for each value of p.
Although the corresponding derivatives may depend on the
particular choice for the parameter δ, we have verified that
our results did not change significantly (within the error bars)
for δ < 0.001; the results of figure 4 correspond to δ =

Figure 3. Logarithmic-scale (base 10) plots of the magnetization
versus time t (in MC steps), for different site concentrations at
criticality, from a completely ordered initial spin configuration,
m0 = 1 (see equation (6)).

Figure 4. Logarithmic-scale (base 10) plots of the quantity D(t)
(cf equation (7)) versus time t (in MC steps) for different site
concentrations at criticality. The slope of each straight line yields the
exponent 1/(νz).

0.001. The slopes of the straight lines yield the combination
of exponents, 1/(νz), which varies typically in the range from
0.25 (for p = 0.70) up to 0.48 (for p = 1.0). Hence, the
combination of exponents 1/(νz) is characterized also by a
significant breakdown of universality.

The ratio of moments of the magnetization, using mixed
initial conditions, as defined in equation (11), is exhibited in
figure 5 for different site concentrations at criticality (lattice
size L = 256). The validity of the scaling law of equation (11)
is verified through the good quality of the straight-line fits
shown in the time interval from t = 10 → t = 1000 MC
steps. The slopes of the straight lines, which were computed, in
each case, by considering small variations in this time window,
correspond to the exponent d/z ≡ 2/z. From these plots one
may estimate the dynamical critical exponent z, independently.
The lines of figure 5 yield a clear breakdown of universality
in the exponent z, which varies from its well-known value
z = 2.14(3), for p = 1 (close to the precise estimate
z = 2.1665 ± 0.0012 of [30], considering the error bars) up
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Figure 5. Logarithmic-scale (base 10) plots of the ratio of
magnetization moments (see equation (11)) versus time t (in MC
steps) for different site concentrations at criticality, using mixed
initial conditions for the spins. The slope of each straight line yields
the exponent d/z ≡ 2/z.

to z = 3.78(6), in the case p = 0.70, as shown in the fifth
column of table 1. The exponent z, related to the divergence of
the correlation time near criticality, increases for increasing site
dilutions, as expected, reflecting an enhancement in the critical
slowing down for smaller values of p.

Now, considering the estimates of the exponent z, one
may use the results from the linear fits of figures 3 and 4
in order to get the static exponents β and ν. The resulting
static exponents presented larger fluctuations for the lattice size
L = 128, suggesting in some cases a slight breakdown of
universality, which is attributed to finite-size effects. In fact, by
increasing the lattice size (L = 256), universality is obtained
within the error bars. These results, which are in agreement
with those of recent Monte Carlo simulations [27], favor
the strong-universality picture for static critical exponents
of disordered magnetic systems, according to which the
leading contributions for these exponents are universal and
possible universality-breakdown contributions come only as
logarithmic corrections.

In figures 6 and 7 we compare the results of simulations
for the two lattice sizes studied herein, i.e. L = 128 and
256. It should be mentioned that the finite-size effects are
very important in the present model, being responsible for the
controversies concerning its static exponents and that these
effects become more pronounced for higher site dilutions. In
figure 6 we exhibit the magnetization decay, according to
equation (6); one observes that for larger site concentrations
(p = 0.90 and 0.80), the finite-size effects are negligible and
the two lattice sizes considered lead essentially to the same
results, considering the error bars. However, finite-size effects
appear in figure 6 for the concentration p = 0.70, where
one gets a small discrepancy between the results of the two
lattice sizes. In fact, the results for p = 0.70 in the smaller
lattice present a slight breakdown of universality in the ratio
β/ν, which disappears for the larger lattice size. Comparisons
of the results for the ratio of moments of equation (11), for
the two lattice sizes, are shown in figure 7(a) (p = 0.70)
and figure 7(b) (p = 0.90). One sees that the amplitude

Figure 6. Logarithmic-scale (base 10) plots of the magnetization
versus time t (in MC steps), for typical site concentrations at
criticality, from a completely ordered initial spin configuration,
m0 = 1 (see equation (6)), are compared for the two lattice sizes
studied, namely L = 128 and 256. It should be noticed that the data
for p = 0.80 and 0.90 appear superposed.

coefficient of F2(t) depends on the lattice size L; however,
in what concerns its exponent, the finite-size effects are not
significant, showing that the lattice size L = 128 is sufficient
for the estimate of the dynamical exponent z. The plots shown
in figures 6 and 7 suggest that the finite-size effects become
more important for smaller site concentrations and for those
quantities depending on static critical exponents.

The present results, associated with a breakdown of
universality in the dynamic critical exponents, corroborate
those found previously on a similar disordered system, namely
the two-dimensional random bond Ising model [20]. In [20],
the authors studied a disordered Ising ferromagnet defined in
terms of a Hamiltonian analogous to the one of equation (12)
by replacing Jεiε j → Ji j , where the couplings {Ji j} were
taken as J or r J (0 � r � 1) randomly with probability 1/2.
In what concerns universality, the site dilution, characterized
by the probability p (analyzed herein) and the bond disorder,
represented by the ratio of weak to strong bond intensity
(considered in [20]), should lead to equivalent effects, at least
qualitatively.

To conclude, we have studied the site-diluted ferro-
magnetic Ising model on a square lattice within short-time-
dynamics simulations. Different values of site concentrations
p were considered in the range 0.70 � p � 1.00. Through
an analysis of the scaling with time of the magnetization and
some of its moments, as well as of a two-time correlation
function, dynamical exponents and the static exponents β and
ν were obtained, at criticality. An evident breakdown of
universality was found in the dynamical critical exponents,
which exhibited typical variations by a factor of two, in
the range of site concentrations considered. However, in
what concerns static critical exponents, our estimates preserve
universality; this result is in agreement with previous standard
Monte Carlo analysis [27], favoring the strong-universality
picture for the static critical exponents of disordered magnetic
systems, which claims that the presence of disorder affects
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Figure 7. Logarithmic-scale (base 10) plots of the ratio of magnetization moments (see equation (11)) versus time t (in MC steps), for two
typical site concentrations, p = 0.70 (a) and p = 0.90 (b), are compared for the two lattice sizes studied, namely L = 128 and 256.

the critical properties of the model only through logarithmic
corrections to the pure-system behavior.
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